A q-weighted version of the Robinson-Schensted algorithm

نویسندگان

  • Neil O’Connell
  • Yuchen Pei
چکیده

We introduce a q-weighted version of the Robinson-Schensted (column insertion) algorithm which is closely connected to q-Whittaker functions (or Macdonald polynomials with t = 0) and reduces to the usual Robinson-Schensted algorithm when q = 0. The q-insertion algorithm is ‘randomised’, or ‘quantum’, in the sense that when inserting a positive integer into a tableau, the output is a distribution of weights on a particular set of tableaux which includes the output which would have been obtained via the usual column insertion algorithm. There is also a notion of recording tableau in this setting. We show that the distribution of weights of the pair of tableaux obtained when one applies the q-insertion algorithm to a random word or permutation takes a particularly simple form and is closely related to q-Whittaker functions. In the case 0 ≤ q < 1, the q-insertion algorithm applied to a random word also provides a new framework for solving the q-TASEP interacting particle system introduced (in the language of q-bosons) by Sasamoto and Wadati [41] and yields formulas which are equivalent to some of those recently obtained by Borodin and Corwin [7] via a stochastic evolution on discrete Gelfand-Tsetlin patterns (or semistandard tableaux) which is coupled to the q-TASEP. We show that the sequence of P -tableaux obtained when one applies the q-insertion algorithm to a random word defines another, quite different, evolution on semistandard tableaux which is also coupled to the q-TASEP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Robinson-Schensted correspondence as the quantum straightening at q=0

We show that the quantum straightening algorithm for Young tableaux and Young bitableaux reduces in the crystal limit q 7 ! 0 to the Robinson-Schensted algorithm.

متن کامل

A $q$-Robinson-Schensted-Knuth Algorithm and a $q$-Polymer

In Matveev-Petrov (2017) a q-deformed Robinson-Schensted-Knuth algorithm (qRSK) was introduced. In this article we give reformulations of this algorithm in terms of the Noumi-Yamada description, growth diagrams and local moves. We show that the algorithm is symmetric, namely the output tableaux pairs are swapped in a sense of distribution when the input matrix is transposed. We also formulate a...

متن کامل

Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm

We introduce a generalization of the Robinson-Schensted-Knuth algorithm to composition tableaux involving an arbitrary permutation. If the permutation is the identity our construction reduces to Mason’s original composition Robinson-Schensted-Knuth algorithm. In particular we develop an analogue of Schensted insertion in our more general setting, and use this to obtain new decompositions of the...

متن کامل

Skew Domino Schensted Algorithm

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

Evacuation and a geometric construction for Fibonacci tableaux

Tableaux have long been used to study combinatorial properties of permutations and multiset permutations. Discovered independently by Robinson and Schensted and generalized by Knuth, the Robinson-Schensted correspondence has provided a fundamental tool for relating permutations to tableaux. In 1963, Schützenberger defined a process called evacuation on standard tableaux which gives a relationsh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013